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ABSTRACT: The data stream classification tasks are batch learning, suffers from poor efficiency and lack of 
scalability. Recently cost-sensitive online classification algorithms pooled with adaptive regularization 
introduced classification. In practical applications, most of the data set is imbalanced state in expressions of 
class division. The proposed Adaptive Cost-Sensitive Sparse Representation Truncated Gradient based 
Classification (ACSSRTGC) for the difficulty of class-imbalance. The test samples, class labels are predicted 
by reducing the losses incurred due to misclassification, acquired through the computation of the posterior 
probabilities. The proposed algorithms are theoretically analysed and their efficiency and characteristics are 
empirically validated in elaborate experiments via the German and Covtype dataset. The results of the 
methods are measured via the classification metrics and implemented in MATLAB environment. This 
research experiment result outperforms the cost sensitive online gradient descent technique and adoptive 
regularized cost-sensitive online descent approach.  

Keywords:  Adaptive Regularization, Sketching Learning, Online Learning, Cost-Sensitive Classification, Truncated 
Gradient algorithm and Sparse Representation.  

I. INTRODUCTION  

Spare online learning and cost sensitive learning 
focuses on new convex optimization. Empowered with 
the exponential rise in datasets, data mining and 
machine learning technologies given a great support to 
the modern time society in several aspects ranging from 
filtering the content to web search performed on social 
sites, and from products’ recommendations to intelligent 
consumer services via e-commerce. Usually, several 
realistic large-scale applications employ numerous 
techniques referred as online learning. It was 
elaborately researched for several years in data mining 
and machine learning domains [1-2]. Usually, online 
learning involves a group of useful as well as machine 
learning approaches which are scalable, whose intent is 
the incremental learning of a model for performs the 
predictions with accuracy on a pool of samples. Class 
imbalance problems are represented [3-5]. 
Online learning is noteworthy due its superior scalability 
and efficiency achieved in applications of large-scale. It 
is utilized for finding a resolution for classification tasks 
online in several data mining applications in practice. In 
spite of being researched deeply in machine learning, 
many of the presented online learning methodologies 
are adverse and probably would not prove to be 
sufficiently useful for finding a solution for cost-sensitive 
classification task, which is a major data mining problem 
that considers the costs of misclassification. Because 
the fact that many of the available online learning 
research are mostly associated with the performance 
achieved out of an online classification algorithm with 
respect to accuracy rate or prediction error rate, which is 
in fact insensitive to cost and therefore unsuitable for 
several practical applications in the field of data mining, 
particularly for tasks involving cost-critical classification 
in which the datasets are frequently in imbalanced state 

with respect to class. Misclassification cost of instances 
from various classes could be relatively dissimilar [6]. 
Consequently, Cost-Sensitive Online Classification 
framework [7-8] is introduced some time before for filling 
gap in cost critical classification and online learning. In 
this, algorithms group called Cost-Sensitive Online 
Gradient Descend (COG) is suggested for direct 
optimization of predetermined cost-based metrics 
depending on online gradient descent method.  In order 
to improve COG algorithm, Adaptive Regularized Cost- 
Sensitive Online Gradient Descent algorithms (ACOG), 
which is grounded on benchmarked Confidence 
Weighted mechanism is planned. In practical, imbalance 
in the class distribution is observed in most of the data 
sets. In lieu with further investigation on the deep theory 
of cost-critical online learning, it is highly suggested to 
analyse the sparse computation techniques involved in 
problems involving cost sensitive online classification. 
With this motivation, investigated an Adaptive Cost-
Sensitive Sparse Representation Truncated Gradient 
based classification (ACSSRTGC) for the problem of 
class-imbalance. Next, elaborate experiments are 
carried out to assess the performance and efficiency of 
the newly introduced algorithms and then they are 
applied for finding a resolution to the problem involving 
online anomaly detection tasks from various practical 
research fields. Potential results help in reassuring the 
efficiency and usefulness of the techniques in practical 
cost-critical online classification issues. 

II. LITERATURE REVIEW  

Wang et al., recommended a new design aimed at cost-
sensitive online classification that uses ideas of online 
gradient descent strategies. According to the design, 
these algorithms are used for optimizing two prevalent 
cost-sensitive facets: specificity and sensitivity weighted 
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summation increase and expenses of weighted 
misclassification reduction [7]. 
Lee and  Stephen briefs the iterative methods to 
calculate the subgradient directions which is useful to 
stochastic problems over large and streaming data set. 
[8]. 
Crammer et al., proposed a set of margin based online 
learning algorithms developed for different tasks of 
prediction. Specifically algorithms are formulated and 
evaluated with the objective of resolving binary and 
multiclass classification, regression, uniclass prediction 
and sequence prediction. The steps on updating 
different algorithms all rely on analytical solutions for 
rather ordinary constraint based optimization problems. 
This amalgamated view helps in showing the worst-case 
loss thresholds for various algorithms and for different 
decision problems that depends on one individual 
lemma. The thresholds on the aggregated loss of the 
algorithms are associated with the least loss, which can 
be achieved with the help of any static hypothesis, and 
like it is, they are suitable for both implementable and 
non-implementable configuration [9].  
It emphasis the merits of two learning paradigms are, it 
incrementally update the trained model, measure and 
sparsity of solutions [10]. Zhenbing Liu et al., briefs 
about how to reduce the cost of misclassification  loses 
in cost sensitive approach [11]. Ma compares with the 
original truncated variants and prediction accuracy to 
find the better result [12].  The approach enables us to 
handle the regular and high dimensional spares data for 
more effective learning done by [13].      
Zhang et al., proposed a novel Streaming Features 
algorithm (OLSF) including Online Learning in addition 
with two modifications, integrating selection of streaming 
features and online learning for aiding trapezoidal data 
sets learning filled with huge number of training features 
and examples. In case another new training instance 
with novel features springs up, classifier sets on 
updating the features, which exist already by using 
passive-aggressive update rule. Structural risk reduction 
principle is obtaining updated new features. Sparsely of  
feature is proposed employing projected truncation 
approach [14]. 
Yan et al., investigated a technique known as Online 
Heterogeneous Transfer (OHT) which utilize hedge 
ensemble employing both offline and online data on 
different domains. For this purpose, formulated data of 
unlabeled auxiliary co-occurrence. Labelled source data 
is used to design an offline decision function grounded 
on a heterogeneous similarity. Then target data is 
employed for online decision function learning. At last, a 
hedge weighting strategy is utilized for combining 
decision functions of online and offline in order to use 
information obtained from multiple feature space’s target 
and source domains. Moreover, conventional evaluation 
on error bounds of novel technique is provided. 
Elaborate experiments carried out on three practical 
data sets prove the efficiency of the novel approach 
[15]. 
Zhao et al., introduced a cost-sensitive online 
classification algorithm group. Adaptive regularization is 
combined with it and implemented. The newly 
introduced algorithms are theoretically evaluated and 
then empirically validated using elaborate efficiency to 
prove their efficiency and characteristics. Thereafter, to 
achieve a better balance between the performance and 
efficacy, further sketching approach is presented into 
the algorithms, which considerably improves the speed 
of computation with negligible loss in performance. At 

last, the algorithms are used for dealing with various 
tasks of online anomaly detection found in practice. The 
results achieved indicate that the newly introduced 
algorithms are useful and effective in finding a resolution 
to problems involving cost-sensitive online classification 
in a variety of practical fields [16-20]. 

III. PROPOSED METHODOLOGY  

Adaptive Cost-Sensitive Sparse Representation 
Truncated Gradient based classification (ACSSRTGC) 
is proposed for the problem of class-imbalance. The 
class label of test samples are predicted by reducing the 
losses of misclassification, acquired through the 
posterior probabilities’ computation. For L1-
regularization, ordinary online sub-gradient method is 
combined with end of training rounding. Parameter of 
regularization is used in this.  Figure 1 illustrates the 
flow diagram of the novel system.  

 

Fig. 1. Flow chart of proposed ACSSRTGC system. 

A. Problem Setting 
The important objective is the learning of a linear 
classification model that uses an updatable predictive 
vector� ∈ ℝ�, on a set of training 
samples ���	, �	�, … . ���, �� ��, where T refers to the 

overall number of samples, ��  ∈  ℝ� stands for sample 
with d-dimension at time t, and ��  ∈ �1, −1�stands for 
correspondinglabelof true class. To understand, during 
t
th 

learning round, learner receives a sample xt and class 
label ��� =  sign�������, is predicted where wt refers to 
predictive vector of model, which is learnt from 
previous� − 1 samples. After that, model receives 
instance base truth��  ∈ �1, −1�, which, in turn is taken 
as true class label. In case ���  = ��, the model has 
predicted correctly; else, there is an error and hence 
forth a loss is incurred. Finally, the learner updates its 
predictive vector wt depending on the incurred 
distressful loss. The newly introduced ACOG algorithms 
are presented by the objective optimization. But, non-
convex property is exhibited by objective function. In 
order to solve this optimization, indicator function is 
used with its variants of convex. They are described as, 

ℓ
���: ��, ��� = max"0, $% ∗ '�()	� + '�()+	� − ���. ��,-(1)  

ℓ
����: ��, ��� = $% ∗ '�()	� + '�()+	� ∗ max �0,1 −���. ���                                                                                           (2) 

For ℓ
���: ��, ���, the change observed in the margin 

provides more ”frequent” updates for a particular class, 
in comparison with the classical hinge loss; whereas for 

ℓ
����: ��, ���, change in slope results in highly 

”aggressive” updates of particular class. Therefore, 
objective is to reduce learning remorse procedure [14], 

depending on either of the loss functions ℓ���: ��, ��� or 

ℓ
����: ��, ���: ./01/�: = ∑ ℓ��)	 ���; ��� , ���� − ∑ ℓ��∗; ���, ������)	       (3) 
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Proposed
ACSSRTGC

classifier

Class label
generation

Performance
Evaluation

Positive class Negative class

U
C

I
d
a
ta

 s
e
ts



Priakanth et al.,    
    

International Journal on Emerging Technologies 11(2): 283-288(2020)                      285 

�∗ = arg min� ∑ ∇ℓ��; ���, ������)	                                           (4) 

In order to obtain a resolution for this problem of 
optimization, Cost-sensitive Online Gradient descent 
algorithms (COG) [4-5] were presented: ��6	 = �� − η∇ℓ�����                                                   (5) 

Where ηrefers to the learning rate and 

ℓ����� = ℓ ��; ��� , ����                                                 (6) 

IV. COG ALGORITHM 

COG algorithms takes the sample set’s first order 
gradient information only into consideration for updating 
the learner, which in turn, is quite inadequate as several 
studies in the recent times have proven the importance 
of including the second order information [6, 9]. Inspired 
by this finding, adaptive regularization is proposed to be 
introduced to encourage the cost-sensitive online 
categorization. Let it be presumed that online model 
fulfils multivariate Gaussian distribution, i.e., ~ 8�9; ∑� , 
where 9refers to distribution’s mean value vector and ∑specifies distribution’s covariance matrix. After this, the 
class label of a sample x can be predicted on the basis 
of sign (w>x), if specified definite multivariate Gaussian 
distribution. Practically, it is more feasible to predict by 
just employing distribution mean :[�]  = μ  instead of w. 
Therefore, the rule of model prediction, in reality, uses 
sign(9�x) below. To understand better, everyaverage 
value 9> can be regarded to be theknowledge of model 
has about feature i; and covariance matrix’s diagonal 
entry Σ?,? is considered to be feature i’s confidence. 

Usually, lesser value of Σ?,?, themore is confidence in 

average weight 9>  for feature ‘i'. Along with diagonal 
values, the remaining covariance terms Σ?,@ can be 

considered to be the correlations between two average 
weight value μ? and μ?A  for feature i and j.Unconstrained 

objectives are reduced for recasting object functions. It 
uses multivariate Gaussian distribution. Based on 
difference obtained between probability and empirical 
distribution, reduction of unconstrained is done as, BCD�8�9,Σ�||8�9� ,ΣF�� + ηℓ��9� + 	GH ��� ∑ ���              (7) 

WhereBCDrefers to the Kullback- Leibler Divergence 
(KLD), ηindicates the fitting parameter and I stands for 
the regularized parameter. Particularly, this goal aids in 
attaining the balance between distribution divergence 
(first component), loss function (next component) and 
model confidence (final component). In other words, 
objective is certainly attempt doing least degree of 
adjustment at every round for reducing loss as well as 
achieving confidence optimization of model. This 
optimization problem can be resolved by first depicting 
the KLD in an explicit manner: BCD�8�μ,Σ�||8�μ�,ΣF�� = 	G log $�L�ΣM�L�Σ , + 	G Tr�∑ Σ+	F � +	G O|μ� − μ|O∑ 	PQM

G − �G                                                        (8) 

One easy technique used for resolving objective 
function is to form two sections based on μ and Σ, 
respectively. In next step, mean vector μ update and 
covariance matrix Σ is performed one by one: 
Parameter of mean is updated as follows:  9�6	 = argminR S��μ,Σ�                                                             (9) 

If ℓ��9�� ≠  0, the covariance matrix is updated 

Σ�6	 = arg minΣ S��μ,Σ�                                                          (10) 

The important concept behind SACOG is the 
approximation of the second covariance matrix with less 
number of cautiously chosen directions, known as a 

sketch. The improved variant of ACOG is presented 
through Oja’s sketch technique [15], which is developed 
to improve the computational efficiency if the second 
order matrix of serial data is of lower rank. For 
convenience, define ℳ = ��|�� ≠ sign���. ���, ∀� ∈�W��stands for the mistake index set, ℳX  =  � ∈ ℳand �� = 1 indicates the positive set of mistake index 
andℳY   = �� ∈ ℳ, �� = −1�and  �� = −1 refers to the 
negative set of mistake index. In addition, set ℳ  =|ℳ|, ℳX  = OℳXO and ℳY  = |ℳY|towards indicates the 

number of overall errors, positive errors and negative 

errors. Also, ℐ�X  = �[ ∈ [W]|�> = +1� and ℐ�Y  =�[ ∈ [W]|�> = −1�represents negative and positive 

samples index set, where WX  = |ℐ�X| represents number 

of positive samples and WY  = |ℐ�Y| represents number of 
negative samples. For measuring this problem’s 
performance metrics, positive samples are first 
assumed to be rare class, i.e., WX  ≤ WY.  

A. Truncated Gradient 
Forgetting an online variant of simple rounding rule 
given in expression (4), it is noted that direct rounding to 
zero is extremely aggravated. Much small aggravated 
variant helps to reduce coefficient to zero by much 
lesser amount. This concept is the truncated gradient. 
Shrinkage level is computed with help of a gravity 
parameter gi> 0: S��>� =W	��> − ]∇	^��>,_> �, ]0> , θ�                                                   (11) 

where, v = [v1,...,vd]∈R
d
 is a vector and g ≥ 0, T1(v,α,θ)= 

[T1(v1,α,θ),...,T1(vd,α,θ)] is a scalar with T1and it is given 
by, 

W	�aA, α, θ� = c max�0, aA − α�[SaA ∈ [0, θ]min�0, aA + α�[SaA ∈ [−θ, 0]aA else e                 (12) 

Also, the truncation operation can be carried out for 
every K online step. This implies that, integer is not 
produced by case i/K, assume gi= 0; ifi/K is an integer, 
assume gi = Kg to a gravity parameter g > 0. Exact 
selection equals to (4) set g so that, ηKg ≥ θ. If η is 
small, large value of g is required. Basically, a small, 
constant g has to be set, as indicated by regret 
threshold developed at a further process. Generally, 
bigger parameters g and θ are, more amount of 
sparseness is inflicted. Owing to additional truncation 
T1, this technique can result in solutions which are 
sparse, as shown by experiments explained as follows. 
In these experiments, the level of sparseness found 
differs with problem. One specific case, which will be 
tried in experiment, is to fix g = θ. Here, just one 
parameter g is used for controlling sparseness. As 
ηKg≪ θ when ηK is a smaller value, truncation 
operation gets small aggravated compared to rounding 
operation in (4). First, procedure is found to be a 
random means of fixing (4). Fixing θ = ∞ gives one 
significant and special case, which is expressed as S��>� = W��> − ]∇	^��>, _>�, 0>]�                                        (13) 
where, v = [v1,...,vd] ∈ R

d
  is a vector and g ≥ 0, T(v, α) = 

[T(v1,α),...,T(vd, α)] is a scalar, with W�aA, α� = gmax�0, aA − h�[SaA > 0min�0, aA + h�else                                    e (14) 

The technique is an improved version of conventional 
sub-gradient descent technique provisioned by L1-
regularization. Parameter gi ≥ 0 regulates sparseness, 
which the algorithm can accomplish. It is to be noted 
that if gi = 0, standardized random gradient descent and 



Priakanth et al.,    
    

International Journal on Emerging Technologies 11(2): 283-288(2020)                      286 

update rule are similar. The reason behind this (in place 
of a steady g) is that a more persuasive truncation can 
be performed using gravity parameter Kg after every K 
step. This result in sparseness that is improved. 

V. EXPERIMENTS 

Performance and features of existing algorithms such as 
ACOG, COG and proposed ACSSRTGC algorithm are 
evaluated in this section. Then, the effectiveness and 
resourcefulness of sketched versions are further 
evaluated. On each dataset that is German and 
Covtype, the experiments were carried out on arbitrary 
permutations of instances. The results are 
demonstrated in terms of the performance in average of 
20 runs and assessed in terms of three metrics, which 
include specificity, sensitivity and weighted summation 
of specificity and sensitivity. Table 1 illustrates details of 
dataset. The potential results help in showing that the 
newly introduced algorithms are quite useful and 
effective in finding a resolution to problems in cost-
sensitive online classification in diverse real-time fields.  

Table 1: Details about dataset. 

Dataset 
No. of 

examples 
No. of 

features 
No. of 

positive 
No. of 

negative 

German 1000 24 1 2.3 

Covtype 581012 54 1 1 

A. Evaluation with Sum Metrics 
A more apt strategy is to compute aggregated sum of 
weighted specificity and sensitivity: 

sum = hX k �l+ℳl�l + hY k �m+ℳm�m                                   (15)  

where hX, hY ∈[0; 1] refer to the weight parameters for a 

balancebetween sensitivity and specificity, and αX  +αY = 1 . 
It is to be observed that, if p = n = 0:5, then sum metric 
tends to become the well-known metric of accuracy that 
is balanced. Moreover, one more metric that needs to 
be measured is the misclassification cost that the model 
has to incur:  cost = pX ∗ ℳX + pY ∗ ℳY                                           (16) 

where pX, pY ∈ [0; 1] refer to the cost parameters 

ofmisclassification intended for positive as well as 
negative instances, pX + pY= 1. Generally, higher sum 

value, better would be the classification performance. 
Table 2 provides the summary of the experimental 
results achieved of the three classifiers on two datasets 
in terms of sum, sensitivity and specificity, and Fig. 2-4 
shows the evolution of online cost performance during 
every iteration. 

Table 2: Assessment of the classification methods 
and metrics. 

Dataset 
Name 

Metrics 
Methods 

COG ACOG ACSSRTGC 

Covtype 

Sum (%) 53.846 68.154 71.55 

Sensitivity (%) 50.677 72.638 74.250 
Specificity (%) 57.015 63.670 68.850 

German 

Sum (%) 55.998 65.155 68.31 

Sensitivity (%) 40.286 53.92 56.50 
Specificity (%) 71. 71 76.39 80.12 

 

Fig. 2. Sum Results Evaluation of classification methods. 

Fig. 2 shows performance comparison results of sum 
metric with respect to three different classifiers such as 
COG, ACOG and ACSSRTGC on two datasets such as 
Covtype and German. The proposed ACSSRTGC 
algorithm gives higher sum rate of 71.55% for Covtype 
dataset, whereas other methods such as COG and 
ACOG gives only 53.84% and 68.15% respectively.  
Fig. 3 shows performance comparison results of 
sensitivity metric with respect to three different 
classifiers such as COG, ACOG and ACSSRTGC on 
two datasets such as Covtype and German. The 
proposed ACSSRTGC algorithm gives higher sensitivity 

of 74.25% for Covtype dataset, whereas other methods 
such as COG and ACOG give only 50.67% and 72.63% 
respectively.  
Fig. 4 shows performance comparison results of 
specificity metric with respect to three different 
classifiers such as COG, ACOG and ACSSRTGC on 
two datasets such as Covtype and German. The 
proposed ACSSRTGC algorithm gives higher specificity 
of 68.85% for Covtype dataset, whereas other methods 
such as COG and ACOG give only 57.015% and 
63.67% respectively.  
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Fig. 3. Sensitivity Results Evaluation of classification methods. 

 

Fig. 4. Specificity Results Evaluation of classification methods. 

VI. CONCLUSION AND FUTURE DIRECTION 

Motivated by imbalanced dataset issue, propose to 
introduce Adaptive Cost-Sensitive Sparse 
Representation Truncated Gradient Online 
Classification (ACSSRTGC) to empower the cost-critical 
online classification. The proposed Truncated Gradient 
can be highly beneficial for resolving an extensive array 
of imbalanced dataset issue found in online 
classification. But, the advantages gained of 
ACSSRTGC is by reducing performance, since it 
neglects information of correlation among dimensions of 
sample, which are very significant and inevitable to 
dataset having great inherent correlation. In addition, 
apply ACSSRTGC into datasets having two high-
dimensions (i.e., Covtype, German), as for tasks of low-

dimension, new ACSSRTGC algorithms are adequately 
quick. In conclusion, all the potential outcomes promise 
the superiority of the newly introduced algorithms for 
datasets, where high-dimensional datasets are 
generally used and are in hugely imbalanced state with 
respect to class. The works intended for the future 
directions are: (i) further investigation on deeper 
concept of cost-critical online learning; (ii) more analysis 
on sparse computation techniques in problems involving 
cost-critical online classification. 
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